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The determination of the demagnetization 
factor resulting from shape anisotropy in 
ferrite magnets 
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The energy equation which yields the expression, Ho~ = 0.4812Kl/Ms - 47rMs], for the 
intrinsic coercive force of BaFe120,9 has been used as the basis for numerous 
investigations. There is reason to believe, however, that the term, 4% in this expression 
should be replaced by 27r. To settle this question, the energy equation is resolved to obtain 
expressions for both the easy and hard directions of magnetization. The resultant equations 
are used to establish a procedure for the determination of the demagnetization factor 
resulting from shape anisotropy in ferrite magnets. 

A related method is introduced to calculate the saturation magnetization of ferrite 
magnets. It is demonstrated that Ms values derived by means of this procedure deviate 
from single-crystal values by + 4 parts per thousand, maximum. This method uses 
magnetic measurements made in the field, Ha = HA~2 for both the hard and easy 
directions of magnetization. 

The evidence obtained leads to the conclusion that, Ho~ = 0.4812K~/Ms - 2~rMso], for the 
Stoner-Wohlfarth spherical model. 

1. I n t r o d u c t i o n  
BaFelzO~9, PbFe12019, and SrFe12019 magnets 
are comprised of platelet-shaped crystallites 
whose c-axes are assumed [1] to be normal to 
the planar surfaces. It is also assumed that the 
crystal and shape anisotropies of the platelet- 
shaped particles oppose so their effective aniso- 
tropy field, Heft A, is given by the expression [1 ], 

Hef~ A = H A - D M s .  (1) 

In this equation, the anisotropy field, H A = 
2 K ~ / M s  [2], and D is the demagnetization factor 
resulting from shape anisotropy. The term, /(1, 
introduced here is the first-order anisotropy 
constant, and Ms is the spontaneous magnetiza- 
tion. 

Since Da = 4~r for flat plates infinite in extent 
[3], Mee and Jeschke [4] assumed that D ~ 47r 
for a cylindrical specimen comprised of un- 
oriented, thin platelet-shaped ferrite crystallites. 
It is evident that this is a reasonable assumption 
to make because the lead these authors estab- 
lished is still followed [5]. It should be noted, 
however, that the measured coercivity values 
for SrFe12019 displayed in Fig. 2 of their report 
�9 1975 Chapman and Hall Ltd. 
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[4] are greater than the corresponding theoretical 
values. These theoretical values derived on the 
assumption that D = 4~r are consequently open 
to question. It seems more likely that the value, 
D = 27r, should be used when Equation 1 is 
applied to polycrystalline ferrite specimens. The 
reason for this is discussed in this report. 

It will be recognized that resolving this 
question has considerable theoretical signifi- 
cance. Thus, the intrinsic coercive force given [4] 
by the expression, Hei = 0.48 [H A - 4rrMs], is 
seriously affected by replacing 47r with 2~. It is 
also important to resolve this question from an 
applied magnetics point of view since the 
equation used [6] to compute the saturation 
magnetization of ferrite magnets is based on 
relationships between D, N and ~ .  Here, N is 
the ballistic demagnetization factor of the 
magnet, and 214 = (Me + M h ) / 2  is its average 
magnetization in the applied field, Ha = HA~2. 
In this expression, Me is the magnetization 
measured in the easy direction of magnetiza- 
tion, and Mh is the analogous term for the hard 
direction. 

This report is concerned with resolving the 
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question raised and supporting the answer 
obtained with experimental and theoretical 
evidence. 

2. The demagnetization factor, D, of 
ferrite magnets 

In order to establish the value of D for ferrite 
magnets, the energy equation, 

E = K  1sin 2 0 + K 2 s i n  ~0 
- H M s c o s  (~ - 0), (2) 

for magnetization by the rotational process, is 
differentiated with respect to 0 and the product 
equated to zero. In this expression which 
considers only the energy of magnetic inter- 
action and the crystal anisotropy energy,/(1 is the 
first-order and K2 is the second-order anisotropy 
constant. The c-axis of the uniaxial single- 
crystal to which Equation 2 applies is oriented 

radians with respect to the field, H, and 0 is the 
angle between its magnetization vector, Ms, and 
its c-axis. 

When K1 >> K2, which is the case for 
BaFel~O19 and SrFe12019 single-crystals [7], the 
relationship, 

( O E )  = H A s i n 2 0 - ~  ~ 

-2Hs in (~ -  0 ) = 0 ,  (3) 

is used to establish the value of D. 
Fig. 1 is now introduced to show the magne- 

tization vector, 4rrMs, and the vector fields of an 
arbitrarily selected crystallite within the magnet. 
All vectors shown lie in the plane defined by the 
c-axis of the crystallite and its magnetization 
vector, Ms. In this figure, however, 47rMs is 
shown instead of Ms to permit all vectors with 
the exception of H A , to be drawn to scale. 

It is seen that the field, H, in the interior of the 
magnet is the vector sum of the applied field, 
Ha, and the demagnetizing field, NMs [8]. This 
demagnetizing field, however, has a component, 
HD = --NM, in the field direction [3], so that 
the actual field in the crystallite acting in the 
field direction is H a  - N M  [8]. It will be 
recognized that the familiar equation, He = Ha 
- (B  - He)N/4rr,  which is used to express the 
ballistic demagnetization factor for ellipsoids and 
cylinders [9], yields the same result. In this 
expression, He is the effective field in the centre 
of the specimen, and B is its magnetic induction. 

It is readily proved that the difference between 
H and He - N M  is so small it can be ignored in 
many practical applications. In others, com- 
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Figure 1 The magnetization vector and the vector fields of 
a crystallite in the interior of a BaFel~O~9 magnet. 

pensation can be made by considering the 
difference in the directions of H and Ha. For the 
case illustrated by Fig. 1, H = 0.968 (Ha - N M ) .  
This relationship was derived on the assumption 
that the specimen is a sphere and that 
H a  = HA~2. This difference becomes less as c~ 
decrease, Thus H approach H a -  N M  as its 
limiting value as a approaches zero. 

Therefore, to establish the value of D by 
means of Equation 3 to a good first approxima- 
tion, H is replaced by H a  - N M  and Heff A = 
H A - D M s  is substituted for H A. The resultant 
expression follows: 

( H  A - D M s )  sin 20 = 2(Ha 
- N M )  sin (~ - 0). (4) 

This equation applies to a thin platelet-shaped 
crystallite whose DMs vector coincides with its 
c-axis. Microphotographs [10] show, however, 
that the crystallites comprising ferrite magnets 
do not have this shape. Consequently, the 
demagnetization factor resulting from shape 
anisotropy must have a component which lies 
in the equatorial plane as well as the one which 
coincides with the c-axis. 

The magnitude of these components is 
determined by applying orthogonal fields to the 
magnet to obtain the data needed to solve the 
following independent expressions simul- 
taneously: 

( H  A - D a M s )  sin 20 
= 2 ( H ~ - N M e )  s i n ( a -  0), (4a) 

and 
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( H  a - DbMs) sin 2r 
= 2(H A - N M h )  sin (~ - r  (4b) 

In these equations, Da is the demagnetization 
factor resulting from shape anisotropy for the 
easy direction, and Db is the analogous term for 
the hard direction of magnetization [11]. The 
corresponding magnetization terms are, Me and 
Mh, respectively [6]. The angles, r and r are the 
orthogonal counterparts of ~ and 0. 

It is self-evident that, if these equations are 
valid, they must hold for both isotropic and 
oriented magnets of all shapes, placed in fields of 
arbitrary value. Consequently, they must hold 
w h e n  

(Ha - N M e ) / ( H  A - DaMs)  = 1/2, (5a) 

and 

(Ha - N M n ) / H  A - DbMs) = 1/2.  (5b) 

These conditions are imposed on Equation 4a 
and b, thereby making ~ = 30 and r = 3r so 
that these equations are completely satisfied. 
This result permits Equation 5a and b to be 
solved simultaneously to obtain an expression for 
Da and Ob free of trigonometric relationships. 
When this is done and Ha is equated to HAl2,  it is 
found that in the field, H~ = HA~2, 

2Q = (Me + Mh)/2  = D M s / Z N .  (6) 

In this expression, ~ = (Da + Db)/2. 
In order to see if this equation yields reason- 

able values, it is assumed that an isotropic 
spherical specimen is placed in the field, Ha = 
HA~2, after it has been magnetically saturated. 
Under these conditions, f f l /Ms  = 0.761 for the 
Stoner-Wohlfarth model [12]. This compares 
well with, M / M s  = 3/4 obtained by substituting 
the terms, N = 47r/3 for a sphere [3 ], and D = 27r 
into Equation 6. /)  = 2~- because Da ~ 47r for 
thin platelet-shaped ferrite particles [4], con- 
sequently Db ~ 0. 

It  should be noted that the demagnetization 
factor, D = 2~r, corresponds to the one derived 
by means of the free energy equation for 
demagnetization, ED = MsZVD/2.  For con- 
venience, this derivation is given in Appendix I. 

3. Experimental 
The experimental data to be used in support of 
Equation 6 were obtained on the basis of the 
well-established principle that the saturation 
magnetization of a specimen is a vector quan- 
tity. As a consequence, its magnitude cannot be 

established from low-field measurements made 
in only one direction unless the specimen 
evaluated is both spherical and isotropic. 

Isotropic ferrite magnets, however, are diffi- 
cult, if not impossible, to produce. This difficulty 
occurs because these magnets are usually made 
from calcines which are readily oriented by 
mechanical means [13]. As a consequence, the 
specimen produced displays two hysteresis 
loops, one for the easy direction of magnetiza- 
tion and another one for the hard. Data derived 
from loops of both types are used in support of 
Equation 6. 

Fig. 2 displays hysteresis loops of a SrFe:2019 
magnet made in the laboratory using procedures 
intended to minimize orientation. The upper 
hysteresis loop shown is for the easy direction of 
magnetization. This is observed when the field 
is applied to the specimen in the same direction 
used in compacting the calcine from which it was 
made. The lower loop, however, is obtained by 
applying the field normal to this direction. 
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Figure 2 Hysteresis loops of a SrFe:~O~9 magnet specially 
prepared to minimize its orientation. 

It will be noticed that the hysteresis loop for 
the easy direction becomes essentially parallel to 
the Ha-axis at the field value indicated by the 
arrow. This occurs [6] when Ha/HP- = H a / H  A 
= 1/2. The field, Hi ~a, is consequently referred 
to as the "indicated" anisotropy field. 

The hysteresis loops shown in Fig. 2, as well 
as those displayed in Fig. 3, were obtained by 
means of a Magnemetrics Hysteresisgraph with 
pole coils, using procedures which have been 
described [6] and should become apparent by 
referring to these figures. The magnets used to 
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TABLE I The characteristics of the test magnets 

Type magnet Density 47rMe (G) 4~rMh (G) 4~rMre (G) 47rMr~ (G) (BaHd)m He1 (Oe) 
(g cm -3) (MG-Oe) (easy) 

(easy) 

BaFe120191 5.18 4070 2470 3780 640 3,50 2300 
BaFe12019 nI 4.91 3200 3010 2200 1840 0.96 1950 
BaFe12019 Iv 5.00 3215 3085 2240 - -  0,93 1610 
SrFe12019 n 4.67 3080 2985 2160 1900 1.05 2450 
SrFel~Olg v 4.77 3160 3040 2360 1880 1.15 1730 
SrFel~O~9 w 4.87 3290 3080 2380 1840 1.20 2180 
SrFe120~9 TM 4.90 3295 3065 1200 760 - -  300 

1Oriented magnet; contains 2.3 wt % impurities. 
nSintered @ 1210 ~ C-2 h; contains 2.8 wt % impurities. 

mSintered @ 1250~ h; contains 2.8 wt % impurities. 
wSintered @ 1250~ h; contains 2.8 wt % impurities. 
vSintered @ 1285 ~ C-2 h; contains 2.8 wt % impurities. 

v~Sintered @ 1315 ~ C-2 h; contains 2.8 wt % impurities. 
wISintered @ 1315~ h; contains 2.5 wt % impurities. 

obtain these loops, as well as the others whose 
characteristics are reported in Table I, were 
approximately cubic in shape and unground. 

The hysteresis loops displayed in Fig. 2 are 
those of  a SrFe12019 magnet fired to a peak 
temperature of 1285~ for 2 h. The hysteresis 
loops shown in Fig. 3, however, are those of  a 
SrFelsO~9 magnet held at the peak temperature, 
1315 ~ C, for 48 h to cause marked crystal growth 
and consequent extreme shearing of its hysteresis 
loops. In spite of this severe treatment, its 
hysteresis loop for the easy direction followed the 
normal pattern [6] and became essentially 
parallel to the Ha-axis at the field value indicated 
by the arrow. 
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Figure 3 Hysteresis loops of a SrFei20~9 magnet grossly 
overtired to cause extreme shearing of its magnetization 
curves. 
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These figures Show graphically how the 47rMe 
values reported in Table I were measured at 
Ha = HiA/2. In an analogous manner, the 
tabulated 4~rMh quantities were measured at this 
field value. 

Included in Table I are data which are used to 
normalize the intrinsic induction values of the 
magnets with respect to their X-ray densities and 
ferrite contents. The density values listed were 
obtained by displacement methods and are 
believed to be accurate to + 0.1 ~ .  The ferrite 
content reported for the magnet was deter- 
mined by finding the impurities present by 
chemical and spectrographic analyses and sub- 
tracting the sum from 100 ~ .  The results reported 
are considered accurate to + 0.1 ~ .  

4. Bas ic  cons idera t ions  
Equation 6 has been shown to give reasonable 
results only for the case where the theoretical 
specimen is spherical and isotropic. It  is obvious, 
therefore, that before the experimental values, 
4~rMe and 4~rMh given in Table I, can be used in 
support of Equation 6 with confidence, it must 
be proved that ~4 = (Me + Mh)/2 is constant 
f o r  theoretical oriented magnets placed in the 
field, Ha = HAl2. Then to have significance, this 
constant must be evaluated for cubic magnets. 

To meet these objectives, it is assumed that the 
hysteresis loops of an oriented spherical speci- 
men correspond to those of ellipsoids comprised 
of randomly oriented crystallites. Thus, the 
hysteresis loop of a selected prolate ellipsoid 
coincides with that observed for the sphere's easy 
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direction when the field is applied parallel to the 
major axis of the ellipsoid. However, the 
hysteresis loop observed when the applied 
field is parallel to the minor axis of a selected 
oblate ellipsoid duplicates that for the sphere's 
hard direction. The ellipsoids referred to are 
generated by rotating a selected ellipse about its 
major and minor axis, respectively. 

It is proved that M = (Me + Mh)/2 equals a 
constant for ellipsoid pairs by computing their 
l~e/Ms and Mh/Ms values in the field, H = 
HA~2, and averaging the results. Here, the terms, 
2Qe and 214h, are the weighted, averaged magne- 
tization values in the field direction. The results 
obtained indicate that 3~r = (Me + Mh)/2 is 
constant for theoretical, oriented spherical speci- 
mens because the eccentricity of the ellipse used 
to generate the ellipsoids considered varies from 
0 to 0.996. 

Analogous reasoning is used to prove that 
= (Me + Mh)/2 is constant for cylindrical 

specimens. In this case, however, it is assumed 
that the hysteresis loops of oriented cubic 
magnets coincide with those of cylinders com- 
prised of randomly oriented crystallites. 

5. Magnetization equations 
In order to derive the equations needed to 
provide the promised proof, it is assumed that a 
cylindrical specimen is comprised of uniaxial 
crystallites whose c-axes are randomly oriented. 
An incremental volume, 

A g = p2 sin cdpA eAr (7) 

in the specimen contains its portion of these 
crystallites since the specimen is assumed to be 
homogeneous. In this expression, p is the 
distance from the origin to the incremental 
volume, and ~ is the angle between the radius 
vector p and the specimen's axis. This axis is 
oriented so that it is parallel to the applied field, 
Ha. The angle, Ar refers to the rotation of p 
about the specimen's axis. 

Following the lead of Langevin [14] and 
Stoner and Wohlfarth [12], it is assumed that 
magnetic interactions between the crystallites 
can be neglected and that statistical means can 
be used to obtain the weighted average magneti- 
zation of the specimen. Thus, it is assumed that 
the probable number of crystallites in the 
differential volume, dV = (2~r/3)p a sins de ,  whose 
e-axes are o r i e n t e d ,  radians with respect to the 
field direction, is proportional to the volume 
subtended by the angle, d~. The product of this 

number and the magnetization, M = Ms 
cos (~ - 0), of each of these crystallites in the 
field direction is summed over all values of ~. 
The resultant sum when divided by the volume of 
the specimen yields the weighted average 
magnetization in the field direction. 

In order to illustrate this procedure which is 
new, the parameters defined by Equation 8 are 
used. Thus, the distance, r, between the axis of 
revolution of the cylindrical specimen and the 
incremental volume, A V, is given as, r = p sin a. 
The perpendicular distance, z, between this 
incremental volume and the basal plane which 
bisects the cylinder is expressed as, z = p cos e. 

The ellipsoids considered are generated by 
rotating an ellipse about its major and minor 
axes, respectively. The polar equation used when 
the ellipse is rotated about its major axis is 
p2 = b2(1 _ e~)/(1 _ e 2 cos 2 ~), and p~ = a~(1 - 
e2)/(1 - e 2 sin 2 e), when its minor axis serves as 
the axis of rotation. In these expressions, e is the 
eccentricity of the ellipse whose major and minor 
axes are, respectively, b and a. 

The values ofp  from these polar equations are 
used in the expression, dV = (27r/3)p a sin e d e, 
and the relationship, M = Ms cos (~ - 0), is 
invoked to derive equations which express the 
magnetization of ellipsoids of revolution. These 
equations, given below, are based on the 
assumption that the applied field is parallel to the 
axis of rotation 

e/Ms 1('~/2 sin ~ de 
Jo [1 - e 2cos 2.]3/~ 

f ./2 cos (e - 0) s i n .  de 
o [1 - e 2 cos 2 e] a/2 (8) 

and 

_ ('./2 s i n .  d~ 
Mh,IMs | ,]3/2 

J 0  [1  - e zsin 2 

f ,/2 cos ( ,  - 0) sin ~ de 
j 0  [1  - e 2 sin z ~]3/2 (9) 

The term, ~Q, is the weighted average magnetiza- 
tion for the specimen in its easy direction of 
magnetization, and 3~tn is the analogous term for 
the hard direction. These equations, obviously, 
apply only to specimens that have been mag- 
netically saturated. 

When the demagnetization curves derived by 
means of these equations superimpose, the 
specimens they represent are isotropic. However, 
Me can only be made to equal 21/7n by making 
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e = 0. Consequently, as e approaches 0 as a 
limiting value, Equations 8 and 9 yield the 
Stoner-Wohlfarth equation [12] in the following 
form: 

Mth/Ms = (2ffre + 3/lh)/2Ms 

= cos (~ - 0)sin~ d~- (10) 
J0  

The term, ~rth is used here to distinguish the 
averaged magnetization of theoretical specimens 
from the term, _M, used in Equation 6. 

Procedures analogous to those followed to 
obtain Equations 8 and 9 are used to derive 
equations to express the magnetization of 
cylindrical specimens. In this case, however, 
za/cosa~ and r~/sina~ are used in sequence to 
replace pa in the expression, dV = (2;r/3)p a sin~ 
d~. The equations derived follow: 

r e~zeMe/ Ms 

t ~ cos (~ - O) sin~ d~ 
= 2Zea/3 + 2rea/3 

j o COSa~ 

f ~  cos (~_-- 0)de (1 1) 
s in~ 

and 

rh~ZnMh/Ms 

I ~ ~-~ cos (~ - 0) sinc~ d~ 
2Zha/3 ~,0 cosac~ + 2rha/3 

f ~/~ cos (~ - 0) d~ 
(12) 

~/(~- ~) s in~ 

The term, re in Equation 11, is the radius of the 
theoretical cylinder whose weighted average 
magnetization in the field direction is -Me. Its 
length is 2Ze and ze/re --- cot/3 ~ 1. The analo- 
gous dimensions of the cylinder whose magneti- 
zation is 2ffr~ are rn and 2zh, respectively. 
Moreover, z~/r~ = tan/3 ~> 1. 

Here, too, when 2fire = 2fin, the hysteresis 
loops derived by means of these equations 
correspond to those of an isotropic magnet. 
Hence, in the limiting case when cot/3 = tan/3, 

~t~/Ms = (ge + ~ ) / 2 M s  
f "/4 cos (~ - 0) sin~ d~ 

2/3 j 0  c--os~--- ~ + 2/3 

f ,~/2 cos (~ - 0) d~ 
(13) ~/4 sin2~ 

6. Results and discussion 
Data are presented in Table II to show that 
-Mtla = (2~e + Mh)/2 is constant to within 2 ~o 
for both cylindrical and ellipsoidal specimen 
pairs. The Me/Ms and Mh/Ms values tabulated 
were computed by means of Equations 3 and 9 
to 13, inclusive for specimens placed in the field, 
H = HA~2, after they had been magnetically 
saturated. Since demagnetization factors were 
not used in the computations, the 1.8 ~ maxi- 
mum deviation from constancy is ignored and 
the results taken to indicate that (/~e/A/ih)/2 is 
constant for theoretical cylindrical and ellip- 
soidal specimens. 

Data from Table I are then used to establish 
the value of this constant for cubic magnets. 
Thus, the experimental values of &rMe and 
4rrMh for oriented and non-oriented magnets 
made under different conditions, were nor- 
malized with respect to their X-ray densities and 
ferrite contents. The resultant terms listed in 
Table II[ were used to obtain the tabulated 
values o fD/2N by means of Equation 6. In these 
computations, the single-crystal value of 4rrMs 
for BaFe~2019 and SrFe~20~9 [7, 15] was used. 

It is seen that the maximum deviation of these 
-~/2N values from their mean average is less than 
4 parts per thousand. This is assumed to prove 
that, M = (Me + Mh)/2 is equal to a constant, 

T A B L E  I I  The averaged magnetization values, .~rti~ = (3~re q- )fIh)/2, of theoretical cylindrical and ellipsoidal 
specimens placed in the field, H/H ~ = 1/2, after magnetic saturation 

Cylindrical specimens Ellipsoidal specimens 

2ze/re .~Ie/Ms ~ / M s  ()f[e-t-Mh)/ e ~ 
2Ms 

NlolM~ ~hlMs ( ~  + PA)I 
2M~ 

1.00 0.788 0.788 0.788 
1.73 0.856 0.713 0.785 
2.30 0.886 0.677 0.781 
2.75 0.902 0.656 0.779 
3.73 0.925 0.624 0.774 

0 0.761 0.761 0.761 
0.89 0.882 0.634 0.758 
0.9845 0.948 0.561 0.754 
0.9922 0.962 0.545 0.753 
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TABLE I I I  The D/2N factors of the test magnets calculated from their 4~rM~ and 4~Mh values at Ha~Hi a = 1/2. 

Type magnet X-ray density 4~Me &rMh D~/2N Db/2N ~/2N 
(g cm -~) (normalized) (normalized) 

BaFe~OI~ I 5.28 4245 2575 0.889 0.539 0.714 
BaFe~20~9 HI 5.28 3540 3330 0.741 0.697 0.719 
BaFeazO~9 Iv 5.28 3495 3350 0.732 0.702 0.717 
SrFe~O19 II 5.11 3465 3360 0.726 0.704 0.715 
SrFe,2019 v 5.11 3485 3350 0.730 0.702 0.716 
SrFe~20~9 w 5.11 3550 3325 0.743 0.696 0.719 
SrFeI=Olo vII 5.11 3525 3280 0.738 0.687 0.713 

Average 7)/2N = 9/47r = 0.716 

Note." Superscripts refer to footnotes following Table I. 

and this constant  is 9/4rr for cubic ferrite magnets. 
Thus, 

M = (Me + Mh)/2 = 9fMs/&r. (14) 

In  this expression, f is a factor  which indicates 
that  ~/s  derived f rom experimental Me and Mh 
values is to be normalized with respect to the 
magnet ' s  X-ray density and its ferrite content.  

This equation is preferred over the one used 
[6] to compute  the unknown Ms values of  ferrite 
magnets with the following empirical chemical 
formulae:  BaO.5.5  F%Oa;  B a F e I I U  = 4 
BaO. 19Fe2Oa [16], and BaFe~vB = 3 BaO. 16 
F%Oa [6]. The correction factor  for orientation 
effects included in the earlier equation [6] does 
not  appear in Equat ion 14. This is because its 
use cannot  be justified on theoretical grounds.  

To illustrate the use of  Equat ion 14, it is used 
to compute  the 4~rMs values of  the magnets 
whose properties are given in Table I. The 
computed  values are compared  with the corres- 
ponding single-crystal terms [7, 15] in Table IV. 
It  is seen that  agreement between the single- 
crystal values and those computed  is extremely 
good falling within _+ 4 parts per thousand as 
reported in Table I l l .  G o o d  agreement between 
the " indicated" anisotropy field, H~ A values and 

the single-crystal terms [7, 15] is also evident. 
This confirms earlier observations [6]. All Hi  a 
values reported were derived f rom hysteresis 
loops for the easy direction as indicated by Figs. 
2 and 3. 

7, Conclus ion 
The evidence presented indicates that  Equat ion 
6 is fundamental ly sound. I t  may  be used, 
therefore, to compute  the D values of  magnets 
when their Ms and N terms are known. Con- 
versely, when their DIN ratio has been estab- 
lished, an equation similar to Equat ion 14 can be 
used to compute  the Ms value of  the magnet  
using Me and Mh measurements made in the 
field, Ha  = HA~2. 

In  conclusion, it is postulated that  the 
intrinsic coercive force for the Stoner-Wohlfar th  
spherical model  is 

g e i =  0.48 [H A - Ms(D~ + Db)/2] 
= 0 .48[H A - 2~rMs], (15) 

when demagnetization factors are included in 
the computations.  While direct experimental 
p roof  is lacking to support  this conclusion, 
ample evidence has been provided to show that  
/3 = 27r is the proper  value to use when the field, 

TABLE IV Comparing the experimental values of &rM~ and Hi* with the corresponding single-crystal terms 

Type magnet &rMs (G) calc. &rMs (G) published Hi a (kOe) obs. H A (kOe) published 

BaFelzOz~ I 4765 4775 17.3 17.3 
BaFel~01911I 4800 4775 17.3 17.3 
BaFel ~O19 Iv 4780 4775 17.3 17.3 
SrFel.~O19 II 4770 4775 18.7 18.8 
SrFel~O19 v 4770 4775 18.8 18.8 
SrFel~O19 vI 4800 4775 18.7 18.8 
SrFel~O19 vII 4790 4775 18.7 18.8 

Note: Superscripts refer to footnotes following Table I. 
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Ha = HA~2 is appl ied  to the magnet .  There is no 
reason to believe tha t  this value of  D should 
change when the field, Ha  = Ha~2 is reversed in 
direction.  

Appendix 1 
The demagnet iza t ion  factors for  a flat plate,  
infinite in extent,  are [3] Db = De = 0 and  
Da = 47r in terms used by  Stoner  and Wohl fa r th  
[12]. Precedent  [1] is fol lowed by  assuming tha t  
these factors app ly  to s ingle-domain ferrite 
particles.  Then,  in order  to derive an expression 
for the free energy of  demagnet iza t ion  for  these 
part icles in terms involving the ro ta t ion  o f  
DaMs  f rom the c-axis, the fol lowing equat ion  
[17] is invoked:  

{02EDI (16) 
c = 

In this expression,  c is a cons tant  and  0 is the 
angle of  ro ta t ion  of  DaMs  f rom the c-axes. 

By means  of  this expression and the rela- 
t ionships [3], HD = - D A M ,  dED = - H D d M ,  
and ED = DAM2/2, it  is found  tha t  

2 {aZED) (17) 
c = \ V 0 r / 0 = 0  

Here,  H n  is the demagnet iza t ion  field result ing 
f rom shape anisot ropy.  Fur the rmore ,  by  means  
of  these relat ionships,  it  is found  tha t  

{d~ED~ 
- D a  = \ ~ - N ~ ]  �9 ( lS) 

The term, - D a  -- - 4 ~ ,  in Equa t ion  18 is 
equated to c and  the var ia t ion  of  ED with 0 is 
expressed as a cosine funct ion,  thereby,  der iving 
the equat ion,  

2 {O~ED~ 
Ms 2 \--~-0~- ] = - 4 ~ r c o s  20 .  (19) 

The term,  cos 20, is used here to satisfy bo th  the 
re la t ionships  on which this equat ion is based and 
the symmet ry  condi t ions  imposed  by  uniaxia l  
crystals.  These condi t ions  d e m a n d  tha t  only 
even powers  o f  cos 0 appear  in expressions for  
the  free energy o f  an i so t ropy  [2]. 

On integrat ing Equa t ion  19, i t  is found  tha t  

ED = IrMs 2 cos20 + cz (19) 

per  uni t  volume.  Here,  c~ is an in tegra t ion  
constant .  

The free energy expressed by  this equat ion 
and by  Equa t ion  2 are added,  thereby,  ob ta in ing  
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E = /s sin~0 + K2 sin40 + zrMs 2 cosZ0 
+ cl - H M s c o s ( ~ -  0) .  (20) 

Here,  E is the free energy of  magnet iza t ion  by  
the ro ta t iona l  process  when energy terms 
result ing f rom strain and exchange forces are  
neglected. 

Different iat ing E with respect  to 0 and 
equat ing (OE/O0)~ to  0 yields the equat ion,  

(2KI/Ms - 2~vMs)sin 20 = 2 H  sin (~ - 0) ,  (21) 

p rov ided  /(1 >> K2. This equat ion  obvious ly  
suppor ts  the value advanced,  O = 27r, for  an 
isotropic,  spherical  specimen and  shows tha t  
He,f A = H A - 2rrMs. Fur the rmore ,  it  suggests 
that  

Her = 0.48 [H a - 2 r rMs] ,  (22) 

on the condi t ion  tha t  replacing H A with Heft A 
does not  effect the value o f  Hei.  
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